首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   229057篇
  免费   20890篇
  国内免费   10861篇
工业技术   260808篇
  2024年   503篇
  2023年   4047篇
  2022年   6665篇
  2021年   10115篇
  2020年   7752篇
  2019年   6168篇
  2018年   7073篇
  2017年   7869篇
  2016年   7039篇
  2015年   9545篇
  2014年   11827篇
  2013年   14300篇
  2012年   15616篇
  2011年   16530篇
  2010年   14302篇
  2009年   13480篇
  2008年   13159篇
  2007年   12243篇
  2006年   12450篇
  2005年   10606篇
  2004年   7190篇
  2003年   6161篇
  2002年   5797篇
  2001年   5237篇
  2000年   4887篇
  1999年   5523篇
  1998年   4468篇
  1997年   3805篇
  1996年   3581篇
  1995年   2947篇
  1994年   2384篇
  1993年   1733篇
  1992年   1434篇
  1991年   1069篇
  1990年   751篇
  1989年   620篇
  1988年   510篇
  1987年   325篇
  1986年   251篇
  1985年   173篇
  1984年   138篇
  1983年   93篇
  1982年   109篇
  1981年   79篇
  1980年   76篇
  1979年   37篇
  1978年   26篇
  1977年   24篇
  1976年   26篇
  1951年   17篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
71.
Journal of Inorganic and Organometallic Polymers and Materials - Due to their excellent properties, polymides (PIs) result promising as high-performance materials in different technological fields....  相似文献   
72.
The design of polymer acceptors plays an essential role in the performance of all-polymer solar cells. Recently, the strategy of polymerized small molecules has achieved great success, but most polymers are synthesized from the mixed monomers, which seriously affects batch-to-batch reproducibility. Here, a method to separate γ-Br-IC or δ-Br-IC in gram scale and apply the strategy of monomer configurational control in which two isomeric polymeric acceptors (PBTIC-γ-2F2T and PBTIC-δ-2F2T) are produced is reported. As a comparison, PBTIC-m-2F2T from the mixed monomers is also synthesized. The γ-position based polymer (PBTIC-γ-2F2T) shows good solubility and achieves the best power conversion efficiency of 14.34% with a high open-circuit voltage of 0.95 V when blended with PM6, which is among the highest values recorded to date, while the δ-position based isomer (PBTIC-δ-2F2T) is insoluble and cannot be processed after parallel polymerization. The mixed-isomers based polymer, PBTIC-m-2F2T, shows better processing capability but has a low efficiency of 3.26%. Further investigation shows that precise control of configuration helps to improve the regularity of the polymer chain and reduce the π–π stacking distance. These results demonstrate that the configurational control affords a promising strategy to achieve high-performance polymer acceptors.  相似文献   
73.
The soft nature of organic–inorganic halide perovskites renders their lattice particularly tunable to external stimuli such as pressure, undoubtedly offering an effective way to modify their structure for extraordinary optoelectronic properties. Here, using the methylammonium lead iodide as a representative exploratory platform, it is observed that the pressure-driven lattice disorder can be significantly suppressed via hydrogen isotope effect, which is crucial for better optical and mechanical properties previously unattainable. By a comprehensive in situ neutron/synchrotron-based analysis and optical characterizations, a remarkable photoluminescence (PL) enhancement by threefold is convinced in deuterated CD3ND3PbI3, which also shows much greater structural robustness with retainable PL after high peak-pressure compression–decompression cycle. With the first-principles calculations, an atomic level understanding of the strong correlation among the organic sublattice and lead iodide octahedral framework and structural photonics is proposed, where the less dynamic CD3ND3+ cations are vital to maintain the long-range crystalline order through steric and Coulombic interactions. These results also show that CD3ND3PbI3-based solar cell has comparable photovoltaic performance as CH3NH3PbI3-based device but exhibits considerably slower degradation behavior, thus representing a paradigm by suggesting isotope-functionalized perovskite materials for better materials-by-design and more stable photovoltaic application.  相似文献   
74.
微波隔离器是微波系统中不可或缺的器件,常见的隔离器都采用了铁氧体旋磁材料配合吸收负载实现电磁波的单向传输。这种器件虽然可以使电磁波单向传输,但是并不能改善能量的浪费问题,还增加了系统的复杂度。针对上述问题,本文基于电磁超材料设计了一种微波单向传输的圆波导,使用波导内壁涂覆折射率逐渐变化的材料来影响电磁波的传输特性,从而实现电磁波单向传输。本文给出了微波单向传输的电磁计算模型和超材料结构及属性,并通过简化这种超材料使其易于实现;最后通过电磁仿真分析了这种材料的电磁特性并给出了这种材料的实现方法。  相似文献   
75.
A novel ternary hybrid flame retardant named P-g-C3N4@PGS-Ti was prepared through step-by-step method. First, titanium dioxide was loaded on PGS to make PGS-Ti (where PGS = palygorskite), and then, PGS-Ti was decorated by phosphor-doped g-C3N4 (abbreviated as P-g-C3N4) to prepare a ternary flame retardant of P-g-C3N4@PGS-Ti. It showed that P-g-C3N4@PGS-Ti could efficiently improve the flame retardancy of epoxy resins (EP). The structure and the morphology of P-C3N4@PGS-Ti were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, scaanning electron microscopy and hermogravimetric analysis (TGA). The flame retardancy and the burning behavior of 5 wt% P-g-C3N4@PGS-Ti composited EP were well investigated through TGA, limiting oxygen index (LOI), cone calorimeter test (CCT) and vertical burning test (UL-94 standard). It was found that the peak heat releasing (pk-HRR) of the EP/P-g-C3N4@PGS-Ti composite reduced 36% (from 1459 to 852 kW/m2) with the addition of 5 wt% of P-g-C3N4@PGS-Ti flame retardant to the matrix of EP. The combustion residue analysis showed that the EP/P-g-C3N4@PGS-Ti composite gained the most continuous and firmest char yield due to the synergistic effect of PGS, TiO2 and the introducing of P element. The mechanism proved that the combination of gas phase and condensed phase flame-retardant processes were well coordinated to improve the fire retardancy for EP. We tested and studied the mechanical properties of EP/P-g-C3N4@PGS-Ti composites. Only 2.4% decreasing of flexural strength and 23.5% decreasing of impact strength in EP/P-g-C3N4@PGS-Ti composites compared to pure EP, respectively. But according to the test results of EP/P-g-C3N4@PGS-Ti composite material and the control sample in the system, EP/P-g-C3N4@PGS-Ti composite material had the highest flexural modulus and impact strength.  相似文献   
76.
To investigate the evolution of the structural and enhanced magnetic properties of GdMnO3 systems induced by the substitution of Mn with Cr, polycrystalline GdMn1-xCrxO3 samples were synthesized via solid-state reactions. XRD characterization shows that all GdMn1-xCrxO3 compounds with single-phase structures crystallize well and that Cr3+ ions entering the lattice sites of GdMnO3 induce structural distortion. SEM results indicate that the grain size of the synthesized samples (a few microns) decreases as the Cr substitution concentration increases. Positron annihilation lifetime spectroscopy reveals that vacancy-type defects occur in GdMn1-xCrxO3 ceramics and that the vacancy size and concentration clearly change with the Cr content. The temperature and field dependence of the magnetization curves show that Cr substitution significantly influences the magnetic ordering of the gadolinium sublattice, improving the weak ferromagnetic transition temperature and magnetization of GdMn1-xCrxO3. The enhanced magnetization of GdMn1-xCrxO3 is closely related to the vacancy defect concentration.  相似文献   
77.
The support flux was first investigated as a separate influencing factor for its effect on performances of ceramic filtration membranes. Three pre-membranes were prepared by tape-casting and then transfer-coated to supports to form dual-layer ceramic membranes after sintering. Experiments demonstrated that membrane layers with almost the same properties were obtained despite the huge difference in support flux. When the support flux increases from 3.120 to 97.53 m3m?2h?1, the flux of these three membrane series have increased by 75%, 186% and 228%, respectively. Experimental rules can provide structural design and evaluation from the perspective of permeability. The limit membrane flux of a certain system was derived according to the resistance distribution law of internal membrane structure and the Darcy's theorem. On this basis, a method for designing support flux was proposed. Furthermore, we present a criterion to quickly and easily evaluate the match between the support and the top layer, which is the ratio of membrane resistance to total resistance. Finally, the filtration resistance of penetration caused by suction of membrane particles into the support was measured for the first time, taking the advantage of the transfer-coating method that inherently free of penetration. Our works are expected to deepen the understanding of the ceramic membrane structure and provided guidance for its rational design and optimization.  相似文献   
78.
投资者关系管理是公司通过与资本市场沟通促进投资者对公司的了解和认同,实现公司价值最大化的战略管理行为,是公司治理现代化的重要内容.投资者关系管理的理论源起欧美等发达国家资本市场,与欧美发达国家完善的资本市场体系和成熟的投资者关系管理体制相比,我国目前仍处于快速发展阶段,因此在投资者关系管理上存在着一定的差距.分析了国内投资者关系管理的现状,并就投资者关系管理的内涵与意义,国有上市公司的投资者关系管理的目标与内容,投资者管理过程中需注意的问题和建议进行了论述.国有上市公司应坚持以人民为中心的发展思想,秉持对投资者高度负责的理念,坚持规范化、市场化、国际化方向,致力于构建大股东与中小股东相互尊重、和谐相处的利益共同体.  相似文献   
79.
AgNbO3 lead free AFE ceramics are considered as one of the promising alternatives to energy storage applications. In the majority of studies concerning the preparation of AgNbO3 AFE ceramics, an oxygen atmosphere is required to achieve high performance, increasing the complexity of the fabrication process. Herein, a facile approach to preparing AgNbO3 ceramics in the ambient air was reported, in which the AgNbO3 ultrafine powder with stable perovskite structure was synthesized by hydrothermal method instead of the conventional ball milling process, leading to a lower temperature of phase formation and thus smaller grain size. The resulting ceramics sintered at 940 °C displayed high breakdown strength (216 kV/cm) and a recoverable energy density of 3.26 J/cm3 with efficiency of 53.5 %. Also, the high thermal stability of recoverable energy density (with minimal variation of ≤20 %) and efficiency (≤ 10 %) over 30–150℃, enables AgNbO3 ceramics achieved to be a promising candidate for energy storage applications.  相似文献   
80.
Pathogens pose a serious challenge to environmental sanitation and a threat to public health.The frequent use of chemicals for sterilization in recent years has not only caused secondary damage to the environment but also increased pathogen resistance to drugs,which further threatens public health.To address this issue,the use of non-chemical antibacterial means has become a new trend for environmental disinfection.In this study,we developed red phosphorus nanoparticles(RPNPs),a safe and degradable photosensitive material with good photocatalytic and photothermal properties.The red phosphorus nanoparticles were prepared using a template method and ultrasonication.Under the irradiation of simulated sunlight for 20 min,the RPNPs exhibited an efficiency of 99.98%in killing Staphylococcus aureus due to their excellent photocatalytic and photothermal abilities.Transmission electron microscopy and ultraviolet–visible spectroscopy revealed that the RPNPs exhibited degradability within eight weeks.Both the RPNPs and their degradation products were nontoxic to fibroblast cells.Therefore,such RPNPs are expected to be used as a new type of low-cost,efficient,degradable,biocompatible,and eco-friendly photosensitive material for environmental disinfection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号